Science Society

by Catarina Cunha

We invite you to dive into the world of science and discovery, where knowledge knows no bounds. This podcast series aims to bring together a diverse array of scientists, researchers, and thought leaders who are at the forefront of their respective fields. From astrophysics to zoology, climate science to genetics, each episode explores groundbreaking research and innovative insights, providing listeners with a firsthand look  ... 

 ...  Read more

Podcast episodes

  • The Unseen Risks of Sea-Level Rise with Dr. Logan

    The Unseen Risks of Sea-Level Rise with Dr. Logan

    In this enlightening episode, we navigate the intricate world of risk and resilience of urban systems with Dr. Logan. Holding a Doctorate from the University of Michigan and an active member in numerous professional organizations like the Society for Risk Analysis and the Association of American Geographers, Dr. Logan's contributions to the field are formidable. His research paves new ways in designing cities resilient to climate change through the lens of risk science, systems engineering, modeling, and statistics.The episode centers around Dr. Logan's recent groundbreaking paper on sea-level rise (SLR). While traditionally, the focus has been on properties at risk of inundation due to rising sea levels, Dr. Logan proposes an often overlooked but critical metric: the risk of population isolation. His team’s findings suggest that a significant number of people might face isolation, cut off from essential services, much before their properties are inundated. These revelations have substantial implications for how we approach SLR in terms of policy, planning, and even human rights.Through the paper’s insights, Dr. Logan emphasizes the importance of considering not just the physical flooding but the broader, cascading consequences that SLR can introduce. This holistic understanding can dramatically reshape how cities and countries approach SLR, ensuring that adaptation strategies are comprehensive, efficient, and prioritize the well-being of at-risk communities.Journey with us into a world where the rising tides pose risks that stretch beyond mere property damage. Learn about the complexities of planning for a future where inundation and isolation go hand in hand and discover the strategic interventions that can help us build a resilient and inclusive future.Urban Systems, Resilience, Climate Change, Risk Science, Sea-Level Rise, Population Isolation, Inundation, Adaptation Policy, Infrastructure, Displacement, Relocation, Global Climate Adaptation.Logan, T.M., Anderson, M.J. & Reilly, A.C. Risk of isolation increases the expected burden from sea-level rise. Nat. Clim. Chang. 13, 397–402 (2023).

  • Brain Tuning by Bridging Mathematics and Neuroscience w/ Dr. Dimitris Pinotsis: Exploring Cytoelectric Coupling

    Brain Tuning by Bridging Mathematics and Neuroscience w/ Dr. Dimitris Pinotsis: Exploring Cytoelectric Coupling

    In this captivating episode, we dive deep into the intersection of mathematics and neuroscience with Dr. Dimitris Pinotsis. Boasting a PhD in Mathematics and an MSc in Theoretical Physics from the renowned University of Cambridge, Dimitris' academic journey is truly impressive. After publishing numerous papers in mathematics and physics, he shifted his focus to his true passion: neuroscience. His collaborations with leading minds in the field, such as Peter Grindrod, Karl Friston, and Earl Miller, have fortified his expertise in machine learning and developing mathematical methods to analyze brain data.Currently positioned as an Associate Professor at City—University of London and maintaining a Research Affiliate status at MIT's Brain and Cognitive Sciences Department, Dimitris has earned numerous accolades in his career. His commitment to the field is evident from receiving multiple fellowships from prestigious institutions to being honored with several awards, including the Poincare Institute Award.In this episode, we'll also unpack his latest paper which explores a groundbreaking concept: how does the brain's anatomy influence its function? Contrary to the prevailing view, Dimitris and his team propose that the geometry of the brain plays a more pivotal role in its dynamics than previously believed. Through analysis of human MRI data, the team presents evidence that brain activity can be better understood by examining the resonant modes of the brain's geometry instead of just its complex interregional connectivity. This finding has far-reaching implications, reshaping our understanding of how task-evoked activations span across the brain and the role of wave-like activity.Join us as we traverse the intersections of math, brain anatomy, and function, unveiling the mysteries of the human mind with Dr. Dimitris Pinotsis.Pang, J.C., Aquino, K.M., Oldehinkel, M. et al. Geometric constraints on human brain function. Nature 618, 566–574 (2023). Theoretical Neuroscience, Cambridge, Machine Learning, Predictive Coding, Deep Neural Networks, Cognitive Neuroscience, Fellowships, Neural Field Theory, Brain Geometry, Magnetic Resonance Imaging, Wave Dynamics, Brain-wide Modes, Spatiotemporal Properties.

  • Lift Energy Storage Technology: Solution for Decentralized Urban Energy Storage with Dr. Hunt

    Lift Energy Storage Technology: Solution for Decentralized Urban Energy Storage with Dr. Hunt

    The world is experiencing an unprecedented shift towards renewable energy sources, bringing about new challenges related to energy storage. In this exciting episode, Dr. Hunt joins us to discuss his innovative solution: Lift Energy Storage Technology (LEST).LEST is a novel concept of energy storage, leveraging the potential of high-rise buildings. The principle is simple yet innovative: using lifts and vacant apartments in tall buildings to store energy. Dr. Hunt describes how energy is stored by elevating containers filled with wet sand or other high-density materials, effectively using gravity as a storage medium. Interestingly, this system can be incorporated into existing buildings with minimal modifications, using pre-existing lift systems to transport these containers.The cost and potential of LEST are also explored. With an estimated installed storage capacity cost ranging from 21 to 128 USD/kWh, dependent on building height, LEST presents a competitive and decentralized solution for energy storage, with a global potential estimated to be around 30 to 300 GWh.Tune in as we delve into this revolutionary concept that may well shape the future of urban energy storage, providing a solution to the challenges posed by the increasingly variable nature of renewable energy sources.Keywords: Dr. Hunt, Lift Energy Storage Technology, LEST, Renewable Energy, Energy Storage, Gravitational Energy Storage, High-rise Buildings, Decentralized Energy Storage, Renewable Energy Challenges. Lift Energy Storage Technology: A solution for decentralized urban energy storage

  • Technological Approach to Mind Everywhere: A Conversation with Dr. Michael Levin

    Technological Approach to Mind Everywhere: A Conversation with Dr. Michael Levin

    In this groundbreaking episode, we are joined by the acclaimed scientist Dr. Michael Levin, who introduces us to the Technological Approach to Mind Everywhere (TAME). This innovative framework seeks to understand and manipulate cognition in unconventional substrates. By harnessing the power of synthetic biology and bioengineering, we are provided with opportunities to create novel embodied cognitive systems, disrupting conventional philosophies of the mind.Dr. Levin presents a novel perspective on morphogenesis, viewing it as an example of basal cognition. He suggests that problem-solving in various domains, such as anatomical, physiological, transcriptional, and traditional behavioral spaces, can potentially drive cognitive capacities during evolution.One of the most striking discussions is about the importance of developmental bioelectricity in evolution. Implemented by the pre-neural use of ion channels and gap junctions, it scales cell-level feedback loops into anatomical homeostasis, contributing to the plasticity of bodies and minds and enhancing evolvability.Tune in as we delve into this thought-provoking discussion, where we explore the intersections of computational science, evolutionary biology, basal cognition, and more. This conversation carries significant implications for cognitive science, evolutionary biology, regenerative medicine, and artificial intelligence.Keywords: Dr. Michael Levin, Technological Approach to Mind Everywhere, TAME, Synthetic Biology, Bioengineering, Cognition, Morphogenesis, Basal Cognition, Developmental Bioelectricity, Evolution, Cognitive Science, Regenerative Medicine, Artificial Intelligence.

  • Bridging the Gap: Biomimetic Machines with Dr. De Pascali

    Bridging the Gap: Biomimetic Machines with Dr. De Pascali

    In this enlightening episode, Dr. De Pascali presents his revolutionary work on GeometRy-based Actuators that Contract and Elongate (GRACE), a class of pneumatic artificial muscles poised to have significant applications in fields ranging from biodiversity conservation to elder care.While artificial actuators have been successful in mimicking the contraction performance of muscles, the complexity, versatility, and grace of movements realized by muscle arrangements have remained largely unrivaled. Dr. De Pascali's GRACE, however, are designed to contract and extend, capturing the versatility of biological muscles.Comprising a single-material pleated membrane, GRACE can be fabricated at different scales and with varying materials, allowing a broad spectrum of lifelike movements. Intriguingly, GRACE can be produced through low-cost additive manufacturing and even directly integrated into functional devices, such as a fully 3D-printed pneumatic artificial hand. This allows for faster, more straightforward prototyping and fabrication of devices based on pneumatic artificial muscles.Join us as we delve into this innovative realm of biomimetic machines with Dr. De Pascali and explore how this breakthrough can redefine the landscape of robotics and prosthetics.Keywords: Dr. De Pascali, Biomimetic Machines, Pneumatic Artificial Muscles, GRACE, Additive Manufacturing, Robotics, Prosthetics, Artificial Actuators.3D-printed biomimetic artificial muscles using soft actuators that contract and elongate