PubReading

by Mando Mourad

Researchers would love if they can expand time to fit in that publication, article, or review of their topic of interest; if that were true, however, there is no end to bottomless scrolling and missing the important details. PubReading would read out the abstract, results, and discussions to allow hassle-free information and a chance to create connections with like-minded individuals.

Podcast episodes

  • Season 3

  • PubReading [327] - DNA storage in thermoresponsive microcapsules for repeated random multiplexed data access - B. Bögels, T. de Greef et al.

    PubReading [327] - DNA storage in thermoresponsive microcapsules for repeated random multiplexed data access - B. Bögels, T. de Greef et al.

    DNA has emerged as an attractive medium for archival data storage due to its durability and high information density. Scalable parallel random access to information is a desirable property of any storage system. For DNA-based storage systems, however, this still needs to be robustly established. Here we report on a thermoconfined polymerase chain reaction, which enables multiplexed, repeated random access to compartmentalized DNA files. The strategy is based on localizing biotin-functionalized oligonucleotides inside thermoresponsive, semipermeable microcapsules. At low temperatures, microcapsules are permeable to enzymes, primers and amplified products, whereas at high temperatures, membrane collapse prevents molecular crosstalk during amplification. Our data show that the platform outperforms non-compartmentalized DNA storage compared with repeated random access and reduces amplification bias tenfold during multiplex polymerase chain reaction. Using fluorescent sorting, we also demonstrate sample pooling and data retrieval by microcapsule barcoding. Therefore, the thermoresponsive microcapsule technology offers a scalable, sequence-agnostic approach for repeated random access to archival DNA files.https://doi.org/10.1038/s41565-023-01377-4 - 2023

  • PubReading [346] - Transparency Is the Key to Quality - A. Fosang & R. Colbran

    PubReading [346] - Transparency Is the Key to Quality - A. Fosang & R. Colbran

    A workshop held last June by the National Institutes of Health (NIH) Director’s Office, Nature Publishing Group, and Science focused on the role that journals play in supporting scientific research that is reproducible, robust, and transparent. The “Principles and Guidelines for Reporting Preclinical Research” that emerged from the workshop have since been endorsed by nearly 80 societies, journals, and associations.VOL.290,NO.50,pp.29692–29694 - 2015

  • PubReading [343] - The changing career trajectories of new parents in STEM - E. Cech & M. Blair-Loy

    PubReading [343] - The changing career trajectories of new parents in STEM - E. Cech & M. Blair-Loy

    The gender imbalance in science, technology, engineering, and math (STEM) fields has remained constant for decades and increases the farther up the STEM career pipeline one looks. Why does the underrepresentation of women endure? This study investigated the role of parenthood as a mechanism of gender-differentiated attrition from STEM employment. Using a nationally representative 8-year longitudinal sample of US STEM professionals, we examined the career trajectories of new parents after the birth or adoption of their first child. We found substantial attrition of new mothers: 43% of women leave full-time STEM employment after their first child. New mothers are more likely than new fathers to leave STEM, to switch to part-time work, and to exit the labor force. These gender differences hold irrespective of variation by discipline, race, and other demographic factors. However, parenthood is not just a “mother’s problem”; 23% of new fathers also leave STEM after their first child. Suggesting the difficulty of combining STEM work with caregiving responsibilities generally, new parents are more likely to leave full-time STEM jobs than otherwise similar childless peers and even new parents who remain employed full time are more likely than their childless peers to exit STEM for work elsewhere. These results have implications for policymakers and STEM workforce scholars; whereas parenthood is an important mechanism of women’s attrition, both women and men leave at surprisingly high rates after having children. Given that most people become parents during their working lives, STEM fields must do more to retain professionals with children.doi/10.1073/pnas.1810862116 - 2019

  • PubReading [340] - The application of human tissue for drug discovery and development - M. Clotworthy

    PubReading [340] - The application of human tissue for drug discovery and development - M. Clotworthy

    Human tissues are invaluable resources for pharmaceutical research. They provide information about disease pathophysiology - and equally importantly, healthy function; confirmation (or refutation) of potential drug targets; validation (or otherwise) of other models employed; and functional models for assessing drugs’ effects, whether beneficial or undesirable, in the most appropriate environment that can be replicated outside the human body. While human tissues have long been prized by pathologists in furthering our under- standing of disease processes, there is a growing appreciation of their value at the late pre-clinical stage of drug discovery. Human tissues’ potential to contribute to earlier phases of the process, before significant resources have been expended, is also now gaining recognition. Mounting concern over high rates of clinical stage drug failures mandates exploration of avenues for improving efficiency. Human tissue-based assays could play a key role in improving the translation process, as well as in moving towards stratified or personalised medicines. This editorial highlights some of the potential benefits of introducing human biosamples at each stage of the research process as a drug moves from concept to clinic. Some of the challenges with respect to obtaining tissues, minimising variability and gaining acceptance are also discussed.https://doi.org/10.1517/17460441.2012.689282 - 2012

  • PubReading [334] - Open science challenges, benefits and tips in early career and beyond - C. Allen & D. Mehler

    PubReading [334] - Open science challenges, benefits and tips in early career and beyond - C. Allen & D. Mehler

    The movement towards open science is a consequence of seemingly pervasive failures to replicate previous research. This transition comes with great benefits but also significant challenges that are likely to affect those who carry out the research, usually early career researchers (ECRs). Here, we describe key benefits, including reputational gains, increased chances of publication, and a broader increase in the reliability of research. The increased chances of publication are supported by exploratory analyses indicating null findings are substantially more likely to be published via open registered reports in comparison to more conventional methods. These benefits are balanced by challenges that we have encountered and that involve increased costs in terms of flexibility, time, and issues with the current incentive structure, all of which seem to affect ECRs acutely. Although there are major obstacles to the early adoption of open science, overall open science practices should benefit both the ECR and improve the quality of research. We review 3 benefits and 3 challenges and provide suggestions from the perspective of ECRs for moving towards open science practices, which we believe scientists and institutions at all levels would do well to consider.https:// doi.org/10.1371/journal.pbio.3000246 - 2019